10 Fun Examples
Mathematicians like to classify and organize numbers in all kinds of ways. Natural numbers are used for counting and ordering; nominal numbers are used for naming (like a driver’s license number); integers are numbers that can be expressed without a fraction or decimal; prime numbers can only divided by 1 and by themselves; and so on. But there is no limit to how we can understand and use numbers; accordingly, there is a branch of pure mathematics, primarily based upon the study of integers, called “number theory.” Though we now understand that number theory has boundless applications, uses, and purposes, it can appear to be frivolous to the point of pointlessness – especially the subset known as “recreational number theory.” Number theorist Leonard Dickson once said, after all, “Thank God that number theory is unsullied by any application.”
Mostly, saying “emirp” over and over is kind of a blast. Give it a whirl!
8 Interesting numbers
There is an old paradox in the world of mathematics that is known as the “interesting number paradox.” Simply put, if you keep counting natural numbers, eventually you’ll encounter one that isn’t interesting; where it gets paradoxical is that by virtue of being the smallest uninteresting number, that number has now become interesting.
Of course, this is all subjective, as it relies on a vague definition of the word “interesting.” Very generally speaking, a number is considered interesting if it has some type of mathematical quality that sets it apart; 19 is interesting because it’s prime, 999 is interesting because it’s a palindrome (and the UK version of 911); 24 is interesting because (among other reasons) it’s the largest number divisible by all numbers less than its square root. Mathematicians
Leave a Reply